Whole-globe biomechanics using high-field MRI.

نویسندگان

  • Andrew P Voorhees
  • Leon C Ho
  • Ning-Jiun Jan
  • Huong Tran
  • Yolandi van der Merwe
  • Kevin Chan
  • Ian A Sigal
چکیده

The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2-weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP-induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High-field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10-20 mmHg) than at elevated IOPs (20-40 mmHg). IOP also caused measurable increases in the nasal-temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior-inferior diameter. This study demonstrates that high-field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even changes in scleral canal diameter. The fact that the equatorial diameter did not change with IOP, in agreement with previous studies, indicates that a fixed boundary condition is a reasonable assumption for half globe inflation tests and computational models. Our results demonstrate the potential of high-field MRI to contribute to understanding ocular biomechanics, and specifically of the effects of IOP in large animal models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensions of the human sclera: Thickness measurement and regional changes with axial length.

Scleral thickness, especially near the region of the optic nerve head (ONH), is a potential factor of interest in the development of glaucomatous optic neuropathy. Our goal was to characterize the scleral thickness distribution and other geometric features of human eyes. Eleven enucleated human globes (7 normal and 4 ostensibly glaucomatous) were imaged using high-field microMRI, providing 80 m...

متن کامل

A novel and non-destructive method to examine meniscus architecture using 9.4 Tesla MRI

OBJECTIVE To investigate the ability of high-field (9.4 T) magnetic resonance (MR) imaging to delineate porcine knee meniscal tissue structure and meniscal tears. MATERIALS AND METHODS Porcine knees were obtained from a local abattoir, and eight medial menisci with no visible defects were dissected. Lesions simulating longitudinal tears were created on two of the menisci. MR images of the men...

متن کامل

Identifying Vulnerable Plaques Using Mri-based Finite Element Analysis

INTRODUCTION Atherosclerotic vascular disease is the most common cause of morbidity and mortality in the world. Plaque rupture has been identified as a critical step in the evolution of arterial plaques 1 , whereas the biomechanics of plaque rupture is still not fully understood 2,3 . To explore the role of biomechanics in the assessment of risk of rupture in carotid atheromatous plaque using h...

متن کامل

Application of MRI and biomedical engineering in speech production study.

Speech production has always been a subject of interest both at the morphological and acoustic levels. This knowledge is useful for a better understanding of all the involved mechanisms and for the construction of articulatory models. Magnetic resonance imaging (MRI) is a powerful technique that allows the study of the whole vocal tract, with good soft tissue contrast and resolution, and permit...

متن کامل

Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9·4 T with conventional MRI and invasive autopsy

BACKGROUND Conventional whole-body MRI at 1.5 T does not provide adequate image quality of small fetuses, thus reducing its potential for use as an alternative to invasive autopsy. High-field whole-body MRI at 9.4 T provides good images of small animals. We therefore compared the diagnostic usefulness of high-field MRI with conventional MRI for post-mortem examination of human fetuses. METHOD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental eye research

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2017